
TODO: Complete this page (TBS)

Overview

At the most general level, the built-in resources allow users

The Resources module includes classes that:

Represent profiles. As transactions are added and removed, profiles are updated to keep track of maximum
and minimum values over time.

1. 

Detectors, which decided how to report flaws and violations given the resource profiles.2. 

Using resources for your problem

In NDDL, extend existing resource classes to get desired behavior.1. 
In NDDL, specify what type of profile is used to represent maximum/minimum values over time.2. 
In NDDL, specify what type of detector is used to report flaws and violation.3. 
In configuration file (TODO: link) specify how4. 

For example, here is a user-defined resource that extends unary resource, uses X and Y:

The following piece of the configuration file specifies how the built-in solver should handle the flaws reported by
the Y:

Important Notes

To have resource flaws and violations reported, you must XYZ?• 
• 

Options

There are ?? possible profiles that can be used:

Combinations to Use and Avoid

Implementation Matrices

There are many possible pieces of data that can be computed by profiles and monitored by flaw/violation detectors.
Here we show which ones are computed and monitored by the various profiles and detectors:

TimetableProfile GroundedProfile FlowProfile IncrementalFlowProfile
LowerLevelMin Y Y
LowerLevelMax Y *(1)
UpperLevelMin Y *(1)
UpperLevelMax Y Y
InstConsumptionMin
InstConsumptionMax
InstProductionMin

Overview 1



InstProductionMax
CumConsumptionMin
CumConsumptionMax
CumProductionMin
CumProductionMax

Possible New Features

Eventually, we hope to incorporate the following improvements (and bug fixes) into a future version of the
Resources module:

Non-constant upper/lower limits. For example, consider a pool of available cars that might get smaller (cars
break) or larger (new cars bought) over time. The only way to represent this currently is with 'dummy'
production/consumption events.

• 

Preferred value version of grounded profiles, so a preferred value (instead of the earliest value) could be
used for grounding.

• 

A state resource, both for unary states (eg: on/off) and multi-state (eg: red/yellow/green). If you need a
state resource immediately, ask about the hack that the DynamicEUROPA team uses.

• 

The GroundedProfile? does not treat instantaneous/cumulative production/consumption as 'grounded' but
should.

• 

Re-architect flaw/violation detection so a user can pick and choose. For example, the closed-world
assumption might be desired for violations, but not for flaws.

• 

The OpenWorldFVDetector treats flaws in a way that is not really related to the 'open-world' concept (it
doesn't report flaws due to quantity flexibility). This behavior should be separated out; not necessary as part
of open-world approach, and available in closed-world approach.

• 

If you have a need for one of these listed features, please contact the EUROPA development team and we will
attempt to fast-track support for that features.c

Implementation Matrices 2


	tmpUDl3v_tracpdf

